no comments

Perbandingan SEM dengan PLS SEM

Pengertian PLS

Dalam sebuah penelitian sering kali peneliti dihadapkan pada keadaan di mana ukuran sampel cukup besar, tetapi memiliki landasan teori yang lemah dalam hubungan di antara variable yang dihipotesiskan. Namun tidak jarang pula ditemukan hubungan di antara variable yang sangat kompleks, tetapi ukuran sampel data kecil. Partial Least Square (PLS) adalah salah satu metod alternative Structural Equation Modeling (SEM) yang dapat digunakan untuk mengatasi permasalahan tersebut.

Terdapat dua pendekatan dalam Structural Equation Modeling (SEM), iaitu SEM berbasis covariance (Covariance Based-SEM, CB-SEM) dan SEM dengan pendekatan variance (VB-SEM) dengan teknik Partial Least Squares (PLS-SEM). PLS-PM kini telah menjadi alat analisis yang popular dengan banyaknya jurnal internasional atau penelitian ilmiah yang menggunakan metod ini. Partial Least Square disingkat PLS merupakan jenis analisis SEM yang berbasis komponen dengan sifat konstruk formatif. PLS pertama kali digunakan untuk mengolah data di bidang economertrics sebagai alternative teknik SEM dengan dasar teori yang lemah. PLS hanya berfungsi sebagai alat analisis prediktor, bukan uji model.

PLS lebih banyak digunakan untuk belajar bidang analyticalphysical dan clinical chemistry. Di samping itu, PLS dimaksudkan untuk mengatasi keterbatasan analisis regresi dengan teknik OLS (Ordinary Least Square) ketika ciri-ciri datanya mengalami masalah, seperti : (1). ukuran data kecil, (2). adanya missing value, (3). bentuk sebaran data tidak normal, dan (4). adanya gejala multikolinearitas. OLS regression biasanya menghasilkan data yang tidak stabil apabila jumlah data yang terkumpul (sampel) sedikit, atau adanya missing values mahupun multikolinearitas antar prediktor kerana keadaan seperti ini dapat meningkatkan standard error dari koefisien yang diukur (Field, 2000 dalam Mustafa dan Wijaya, 2012:11).

PLS yang pada awalnya diberi nama NIPALS (Non-linear Iterative Partial Least Squares) juga dapat disebut sebagai teknik prediction-oriented. Pendekatan PLS secara khusus berguna juga untuk memprediksi variable dependen dengan melibatkan sejumlah besar variable independen. PLS selain digunakan untuk keperluan confirmatory factor analysis (CFA), tetapi dapat juga digunakan untuk exploratory factor analysis (EFA) ketika dasar teori konstruk atau model masih lemah. Pendekatan PLS bersifat asymptotic distribution free (ADF), data yang dianalisis tidak memiliki pola distribusi tertentu, dapat berupa nominal, kategori, ordinal, interval dan rasio.

Pendekatan PLS lebih sesuai digunakan untuk analisis yang bersifat prediktif dengan dasar teori yang lemah dan data tidak memenuhi asumsi SEM yang berbasis kovarian. Dengan teknik PLS, diasumsikan bahwa semua ukuran variance berguna untuk dijelaskan. Karena pendekatan mengestimasi variable laten diangap kombinasi linear dari indikator, masalah indereminacy dapat dihindarkan dan memberikan definisi yang pasti dari komponen skor. Teknik PLS menggunakan iterasi algoritma yang terdiri dari serial PLS yang dianggap sebagai model alternative dari Covariance Based SEM (CB-SEM). Pada CB-SEM metode yang dipakai adalah Maximum Likelihood (ML) berorientasi pada teori dan menekankan transisi dari analisis exploratory ke confirmatory. PLS dimaksudkan untuk causal-predictive analysis dalam kondisi kompleksitas tinggi dan didukung teori yang lemah.

Seperti penjelasan di atas, metod PLS juga disebut teknik prediction-oriented. Pendekatan PLS secara khusus berguna untuk meprediksi variable dependen dengan melibatkan banyak variable independen. CB-SEM hanya mampu memprediksi model dengan kompleksitas rendah sampai menengah dengan sedikit indikator.

VB-SEM (PLS-SEM ) vs. CB-SEM (AMOS dan LISREL)

Analisis SEM secara umum dapat dibezakan menjadi Variance Based SEM (VB SEM) dan Covariace Based SEM (CBSEM). Pendekatan PLS-SEM didasarkan pada pergeseran analisis dari pengukuran estimasi parameter model menjadi pengukuran prediksi model yang relevan. PLS-SEM menggunakan algoritma iteratif yang terdiri atas beberapa analisis dengan metod kuadrat terkecil biasa (Ordinary Least Squares). Oleh karena itu, dalam PLS-SEM persoalan identifikasi tidak penting. PLS-SEM justru mampu menangani masalah yang biasanya muncul dalam analisis SEM berbasis kovarian. Pertama, solusi model yang tidak dapat diterima (inadmissible solution) seperti munculnya nilai standardized loading factor > 1 atau varian bernilai 0 atau negatif. Kedua, faktor indeterminacy yaitu faktor yang tidak dapat ditentukan seperti nilai amatan untuk variable laten tidak dapat diproses. Kerana PLS memiliki karakteristik algoritma interatif yang khas, maka PLS dapat diterapkan dalam model pengukuran reflektif maupun formatif. Sedangkan analisis CB-SEM hanya menganalisis model pengukuran reflektif (Yamin dan Kurniawan, 2011:15).

Dengan demikian, PLS-SEM dapat dikatakan sebagai komplementari atau pelengkap CB SEM (AMOS dan LISREL) bukannya sebagai pesaing.

Dengan berbekal informasi di atas, diharapakan dapat memperjelas bagi peneliti atau data master dalam menerapkan data pada model struktural yang hendak di bentuknya, SEM atau SEM-PLS. Diharapkan juga bahwa peneliti atau data master tidak memaksakan model SEM pada data sedangkan pemenuhan asumsi pada pemodelan SEM sangat lah kurang (banyak kasus dengan memanipulasi data – terutama pada penelitian sosial). Dari informasi di atas jelaslah bahwa dengan penggunaan SEM-PLS sangat tepat untuk peneliti atau data master yang memiliki data yang memiliki banyak kekurangan dalam pemenuhan asumsi model SEM. Hal ini guna memperoleh hasil maksimal dari pemodelan SEM yang dilakukan dan secara prinsip SEM-PLS merupakan alat yang sama dalam pencarian jawapan atas pemodelan struktural suatu teori atas data yang dimiliki.

Sumber: Mobile Statistik Research& Consulting

Dari: Team MPWS

KOMEN ANDA

Komen

TENTANG KAMI | PENAFIAN | HUBUNGI | HANTAR ARTIKEL