no comments

Partial Least Square (PLS) Fungsi dan Tujuan.

Tujuan Partial Least Square

Walaupun Partial Least Square digunakan untuk menkonfirmasi teori, tetapi dapat juga digunakan untuk menjelaskan ada atau tidaknya hubungan antara variabel laten. Partial Least Square dapat menganalisis sekaligus konstruk yang dibentuk dengan indikator refleksif dan indikator formatif dan hal ini tidak mungkin dijalankan dalam Structural Equation Model (SEM) karena akan terjadi unidentified model. PLS mempunyai dua model indikator dalam penggambarannya, yaitu: Model Indikator Refleksif dan Model Indikator Formatif.

Model Indikator Refleksif

Model Indikator Refleksif sering disebut juga principal factor model dimana covariance pengukuran indikator dipengaruhi oleh konstruk laten atau mencerminkan variasi dari konstruk laten.

Model reflektif mencerminkan bahwa setiap indikator merupakan pengukuran kesalahan yang dikenakan terhadap variabel laten. Arah sebab akibat ialah dari variabel laten ke indikator dengan demikian indikator-indikator merupakan refleksi variasi dari variabel laten (Henseler, Ringle & Sinkovicks, 2009). Dengan demikian perubahan pada variabel laten diharapkan akan menyebabkan perubahan pada semua indikatornya.

Pada Model Refleksif konstruk unidimensional digambarkan dengan bentuk elips dengan beberapa anak panah dari konstruk ke indikator, model ini menghipotesiskan bahwa perubahan pada konstruk laten akan mempengaruhi perubahan pada indikator.

Model Indikator Refleksif harus memiliki internal konsistensi oleh karena semua ukuran indikator diasumsikan semuanya valid indikator yang mengukur suatu konstruk, sehingga dua ukuran indikator yang sama reliabilitasnya dapat saling dipertukarkan.

Walaupun reliabilitas (cronbach alpha) suatu konstruk akan rendah jika hanya ada sedikit indikator, tetapi validitas konstruk tidak akan berubah jika satu indikator dihilangkan.

Model Indikator Formatif

Model Formatif tidak mengasumsikan bahwa indikator dipengaruhi oleh konstruk tetapi mengasumsikan semua indikator mempengaruhi single konstruk. Arah hubungan kausalitas mengalir dari indikator ke konstruk laten dan indikator sebagai grup secara bersama-sama menentukan konsep atau makna empiris dari konstruk laten.

Model hubungan formatif ialah hubungan sebab akibat berasal dari indikator menuju ke variabel laten. Hal ini dapat terjadi jika suatu variabel laten didefinisikan sebagai kombinasi dari indikator-indikatornya. Dengan demikian perubahan yang terjadi pada indikator-indikator akan tercermin pada perubahan variabel latennya.

Oleh karena diasumskan bahwa indikator mempengaruhi konstruk laten maka ada kemungkinan antar indikator saling berkorelasi. Tetapi model formatif tidak mengasumsikan perlunya korelasi antar indikator atau secara konsisten bahwa model formatif berasumsi tidak adanya hubungan korelasi antar indikator. Karenanya ukuran internal konsistensi reliabilitas (cronbach alpha) tidak diperlukan untuk menguji reliabilitas konstruk formatif.

Kausalitas hubungan antar indikator tidak menjadi rendah nilai validitasnya hanya karena memiliki internal konsistensi yang rendah (cronbach alpha), untuk menilai validitas konstruk perlu dilihat variabel lain yang mempengaruhi konstruk laten.

Jadi untuk menguji validitas dari konstruk laten, peneliti harus menekankan pada nomological dan atau criterion-related validity. Implikasi lain dari Model Formatif adalah dengan menghilangkan satu indikator dapat menghilangkan bagian yang unik dari konstruk laten dan merubah makna dari konstruk.

Fungsi Partial Least Square

Setelah para pembaca menelaah secara seksama penjelasan yang lumayan panjang diatas, tentunya bisa jadi malah tambah pusing. Maka bukan maksud untuk menyepelekan tulisan yang diatas, lupakanlah atau simpan saja hasil bacaan anda diatas. Secara mudahnya saya coba simpulkan dari kaca mata orang yang awam ilmu statistik. Yaitu sebagai berikut:

  1. Partial Least Square adalah analisis yang fungsi utamanya untuk perancangan model, tetapi juga dapat digunakan untuk konfirmasi teori.
  2. PLS tidak butuh banyak syarat atau asumsi seperti SEM. Apa itu SEM nanti akan saya jelaskan lebih lanjut pada artikel lainnya.
  3. Fungsi Partial Least Square kalau dikelompokkan secara awam ada 2, yaitu inner model dan outer model. Outer model itu lebih kearah uji validitas dan reliabilitas. Sedangkan inner model itu lebih kearah regresi yaitu untuk menilai pengaruh satu variabel terhadap variabel lainnya.
  4. Kecocokan model pada Partial Least Square tidak seperti SEM yang ada kecocokan global, seperti RMSEA, AGFI, PGFI, PNFI, CMIN/DF, dll. Dalam PLS hanya ada 2 kriteria untuk menilai kecocokan model, yaitu kecocokan model bagian luar yang disebut dengan outer model dan kecocokan bagian dalam yang disebut dengan inner model. Sehingga maksud poin 3 diatas adalah menjelaskan poin 4 ini. Untuk kecocokan model bagian luar ada 2 yaitu pengukuran reflektif dan pengukuran formatif, yang sudah dijelaskan diatas.
  5. Penilaian kecocokan model bagian luar atau outer model antara lain: Reliabilitas dan validitas variabel laten reflektif dan validitas variabel laten formatif.
  6. Penilaian kecocokan model bagian dalam antara lain: Penjelasan varian variabel laten endogenous, ukuran pengaruh yang dikontribusikan dan relevansi dalam prediksi.

 

Sumber : Anwar Hidayat

Dari : Team MPWS

KOMEN ANDA

Komen

TENTANG KAMI | PENAFIAN | HUBUNGI | HANTAR ARTIKEL